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TWO-DIMENS1ONAL SUBSONIC COMPRESSIBLE FLOW PAST ELLIPTIC CYLINDERS

By CARL KAPLAN

SUMMARY

The method of Pogfi is used to cakuhzie, for perfect
ffuids, the e$ect of comprewibility upon the$ow on the sur-
face of an elliptic cylinder at zero angle of attack and un”th
no circulation. The remdt is expre88ed in a closed form
and represents a m“gorousdetermination of the relocn”iyof
the$uid at the surface of the obdacle in~ofar a8 the ~econd
approan”mation is concerned.

Comparison ia made w“th Hooker’8 treatment of the same
problem according to the method of Janzen and Rayleigh
and it is found that, for thick ellipiie cylinders, the two
?nethod8 agree rery well. The labor of computation i8,
moreorer, considerably reduced by the present 8olution.

The third approximation to the compre8tib[e jbw aboui
circular cylinder8, including the terms inrolrz”ngthe factor
(r~cO)4,i8 also obtained and compared with the re8ult giren
by Poggi. It G found that the expression giren by Poggi
i8 incomplete with regard to the terms containing ihefactor
[rdco)’.

INTRODUCTION

The purpose of this paper is to employ the method of
Poggi (reference 1) to determine the effect of compressi-
bility on the flow about elliptic cylinders. This prob-
lem has already been considered by Hooker (reference
2) who made use of the method of Janzen and Rayleigh
but, owing to the necessity for e.spanding a certain
function in the analysis, the “thickness ratio” of tie
ellipse to which his result applies is limited. The thick-
ness ratio of an ellipse is defied m the ratio b/a, where
a and b me the semimajor and semiminor axes, respec-
tively. The method of Poggi, on the other hand, not
only permits an unrestricted thickness ratio but OJSO
reduces the labor of computation.

Briefly, it maybe said that Poggi considers compres-
sible flow to be replaced by an incompressible flow due
to a distribution of sinks and sources throughout the
region of flow. The strength of the distribution in the
plane of the profile is given by

and in the pkme of the circle, into which the profle is
mapped by a suitable conformal transformation, by

where
r, 0 are the polar coordinates of a point in the

plane z(=z+iy) of the circle.
R, ii the radius of the circle into which the pro-

fiIe is mapped and the angular coordinate
on this circle, respectively.

potential of the flow.
v, the magnitude of the velocity of the fluid

in the plane of the profle.
c, the magnitude of the locaI velocity of

sound.
Poggj then fids that the total ~elocity induced, at

any point P (R, ~) of the circular boundary by the fore-
going system of sinks and sources, is:

Poggi’s method of appro.simating the compr=aible flOW .

of a perfeet fluid is based on the assumption that the
incompressible flow is a suitable fimt apprmirnation
and that therefore the values pertaining to that flow
may be substituted for o,, rt, and # in equation (1).
The value of LO thus obtained then represents the
effect due to compressibility and is to be added to the
already known value for the velocity of the incom-
pressible flow. That is,

vcomD=vti,om,+Ao (2)

It is to be noted that, in equation (1), the local
velocity of sound c is not a constant but is related to
the velocity v of the fluid in the plane of the prcfde by
means of BernouUi’s equation and the equation of
state of the fluid. Thus, if the adiabatic equation of
state is adopted,

(3)

where co, m are the corresponding magnitud= in the
undisturbed stream and 7= 1.40s for air.

In order to facilitate the &Mion of equation (1),
k has been the custom to replace c by cO. This aimpli-
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fication of the problem maybe justified by the following
argument. It has been tacitly understood that no-
where in the fluid must the velocity of the fluid exceed
that of the locrd velocity of .aound since the incom-
pressible flow has already been assumed to be a good
first approximation and the effect of compressibility
is merely to distort the streamlines associated with the
incompressible flow. As the maximum fluid velocity
occurs at the surface of the. obstacle, there exists a
value of voz/c# for which the masimum fluid velocity
equals that of the Iocal velocity of sound. This
critical velocity of the fluid is obtained from equation
(3) by replacing a by c. Thus

(4)

This value for c is a lower limit under the condition that
nowhere in the fluid is the locaI velocity of sound ex-
ceeded. The maximum vrdue of c occurs at the stag-
ndion point o= Oand is given by

(5)

Thus both the maximum and the least values of c occur
on the obstacle and everywhere else cm>c>clwf. It
follows from equations (4) and (5) that

( )
fig?4

crn”’-cze”’’-0.0887 1+0.204 ~
%

which increases very slowly as aJ% approaches unity.

In fact, it is seen that the upper limit for c-~cw’ is

0.0973. The foregoing discussion thus shows that c/q
may, as a first approximation, be taken to be unity.
Equation (1) then becomes

lzr

JJ
MVe?)291 ———

AV=~ ~ ~
“ 3X A ao

1–2X Cos (e–a) +h2
&“ (lw)aie (i)

THE FLOW OF A PERFECT COMPRESSIBLE FLUID
PAST AN ELLIPTIC CYLINDER

Let the t plane be the plane of the ellipse and the z
plane be the plane of the corresponding circle. Then it
is well known that the Joukowski transformation

(7)

maps the circle of radius a with its center at the origin
of the z plane into the line segment (—2a, O; 2CZ,O) in
the ~ plane. Also, the circles concentric with the circle
of radius a are transformed into a family of cmfocal
ellipses with common foci at (—2a, O) and (2a, O). If
Z?(>a) denotes the radius of one of tlwae circles, then
the semimajor and semiminor axes of the ellipse into

which it is transformed are, respectively, R+: and

R—~%. The thickness ratio t then becomes:

R–; ~_2
t= —=f —

R+; I+&

or
~_l–t

l+t
where

0-=i

If w denotes the compkx potential of the incon~-
pressible flow in the z plane when a stream of velocity v.
impinges on a.circle of radius R in the direction of tho
negative z axis, then

(7
W=vo z+% (&)

The complex velocity in the t piano is then given by

dw dwch
~=zg

or
dw # —R9
F= fiz’-a’

(9)

When X=; and u=~are introduced, it follows tlmt

~=dws
H

1—2A* Cos 26+A4
cif-

(10)=%21 _2,+A~ Cos 20+ U4N

Following Poggi’s procedure, the Fourier dwdopmcnt
of t$/q? will be obtuined. Thus, by the uso of tho
expansion

1 1
l—213n2 Cos 2tH-u4A4=m4 [ 11+2~ (a~)f’l~s5’~en-l
(see appendix, sec. I),
it follows that

$=~+n$ ati cos 2n0 (11)

where

1+(1–2#)x4
Q=2

1—0-4A4

and forn=l,2, . . . . . .

~2m=2(l–d) (0%’–1) ~aA),n
Gql–uh4)

Also from equation (8)

V,= —%(I— A*)cm e
vd=%(l+hfl) sin e }

(12)
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Then, inserting the expressions for @, r,, and PRgiven
by equations (11) and (12) into equation (6) and making
use of the integrals

J
k sin (8—0

o I—2X Cos (e—c5)+x~ [
sin nOdd= =h!.l ~os ~ $ ~~ ~

—

(see appencli.., sec. II)

s

2r sin (8—6) r

L

o ifn=O
O ~—~hCOS (e—~)+~z Cos n~dd= —Tkn–%n m$if n~ 1

it follows without Wiculty that

AZ$ p—=-
‘rQ 2 [

—sin ~+z~O (2n+ 1) sin (M+ 1)6

s 1 (13)‘(~h+lah– x2n-1aM+2)dk
o

where

~=~g
cG”

Substituting for the ah’s from equation (1 I), eauation
(13) takes the form

. . .

Av_pl–g

[
~—~~ fi ~—(1—d) %Y2n+l) Sin (%l+l)d

R=@

r. :S%(~’’J=~’2]

Replacing N by r, for purposes of integration only,
foIlovrs thut

1=2 (2n+l) sin (2n+ 1)5C[’= (O-’k’)=dk’

J
= –R.P. of ;~ (2n+ l)er@+lJ@ 01= (m)”dr

714
or

s

1 l+ O%w* l—w
I=R.P. of iea ~ (l – ##921_ #d’

‘~
(l;j9’[(l+3#+&) sin 6

I+d
+# sin 36] log ~

+ %F[(l+u’) cos 26–2r~ tan-’ W —

+2[(l+#+u4) sin

Therefore

l-d ,[qppl+w+d,sid– (1–20= Cos 26+ U’)

1+2sin36 Iog~

it

_(l+#)(l-&)’ 1+2C Cos 6+0-2
sin 26 kg l_2~ Cos 6+2

2C

+
[ 1~d (l+u’) cos 26–2# tan-’ 2*

[ ]?
+2 (1+ U2+U’) Sinc$-u’sin36 (14)

For 6= ~, the position of maximum velocity on the sur-

face of the elliptic cylinder,

It is interesting to note that the eqreasion for Av/vO
at the surface of a cirmdar cyhnder fhd in a stream of
velocity L’Oimpinging on it in the direction of the
negative z axis may be obtained from equation (14) by

()allowing c =; to approach zero. Thus, making use

of the expansions

(1–2d C:s 26+d)’=&&+~) +znq(’+~)

1 I–(n–l]u’ & cos 2n6 (see appendk, sec. III)

I+2U Cos 8+2
10g 1–2U Cos 6+0-’

m #+1

–4a2n+l— cos (2n+l)6

~an_l 2U sin 6 . p+l

77=%&L+ 1 ti ~2n+1Ja

~t folIows, neglecting terms containing powers of c
higher than the second, that

t’his expression for Ao/& agrees with that obtained
)y the methods of Janzen, Rayleigh, and Poggi (ref-
mnce 3).

The effect of compressibility, i. e., Ao~%,having been
‘ou.nd, it follows according h equation (2) that the
,otal wbcity at the circular boundary in the z pkme
S given by

(17)

md on the eIIiptic profile in the ~ plane by

()
8—
‘h LfIltpw ()- (1–W C:s 2d+u’)~ ; ctier. (18)

--

Is977s—a9-17
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Table I shows the comparison between the values oi
(V/WO),Uip,, ca.kuktted according to equation (18) and
those obtained by Hooker for an ellipse of thickness
ratio t=% or ~=~. The valuea for the corresponding
inoompreasible flow are included. It is seen that the
results of the two methods agree very well. This agree-
ment is not unexpected since Hooker’s method is part-
icularly applicable to thick fipses. Consider, how-
ever, a slender ellipse, say t=fio or d= Xl. Table II
shows the comparison between the exact calculations of
the present method and the results obtained according
to Hooker’s method, The disagreementis more evident
than that shown in table I for the thicker ellipse.

~
I

1
I
1
/

\

Compressfb[e
; — - —— Incompressible

20 4L .60 80 100
6, deg.

FIGURE I.-The velooity of the flnfd on the surface of sn elliptio oylinder of thickness
mtIo1/10for compmwible and incompmstble flown with @e=O.Sb7.

Figure 1 shows the graph (o/uo),l~j2,,calculated accord-
ing to Poggi’s method for both the compressible and
the incompressible flows past the ellipse of thickness
ratio jfo with Vo/G=0.857,

TABLE 1..

~= 0.5; thioknw ratio= ~

I , I I

1
Mom res-

efbl!

0
.70S3

L MM
L 3417
L 44.12
L 48S7
L m

TABLE II

‘$= 0.857; thickness ratio=fio

THE PRESSURE DISTRIBUTION

According to Bernoulli’s t.heorcm and the adiabittic
equation of state, if p and p are the pressure and density
of the fluid, then

where POand ~ are the pressure iind density, rospcc-
tively, in the undisturbed stream, Expanding the
right-~ancl side of the foregoing equation and neglecting

,

1.2 I

1.0-

\
I

.8- !
I

I
I Compressibi;

I -—-. Incompressible
.6

9

1 ‘:\

R $ !

k; \

.4
I
\
I
\

.2 \
1

0 \
\
\

-.2 ~ — .=. .-- —___ —.
A _

1
0 m 40 60 m 100

c$,deg.
FIGURE2.—The pressureof the flutd on the surfaca of an elllptfc cyllndw of lhtckness

retio l/10 for comprmsfble and incompresdble flows with c#q=0,Sb7.
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terms involving povw.rsof P higher than the first yields

:~=(’-%)+:(’-w+ 0-.0 ‘“)

The pressure distribution is then obtained by sub-
stituting for 0[% from equation (18). Table HI shows
the pressure distribution over the surface of an eIIipse
of thickness ratio 1/10 with ~%=0.857, and figure 2
shows the graph of this distribution together with the
one due to the corresponding incompressible flow.

TABLE III

*0.857; thickness ratio = 1/10

Compressible

THE ATTAINMENT OF THE LO(

LOOTM
.4753

–: 8%
–. 1253
–. 174s
–. 19s3
–. 2o17
:.

-. !M3’M
–. 911M

L VELoc:. N OF SOUND
AT THE SURFACE OF AN ELLIPTIC CYLINDER

According to equation (4) the critkd velocity of the
fluid is given by

(20)

For an elliptic cylinder, at zero angle of attack, the

criticsI velocity occurs at d=; the position of maSmmm

velocity on the cylinder and also in the region of flow.
Hence substituting from equation (18) for (o/uO)CZrir,,at

~=~ yiehls a cubic equation in the variable p.

Th~, from equation (15), if

J-2
.—tan-%+2u II

then

[
u(a) I’P3+4j(a)P’+ 4–@+#Y}

~o+0+*=0—
7+1

(21)

where ~= 1.408 for air.
Table IS’ gives the criticaI values of ~% for the

entire range of thickness ratios incluc@ the limiting
cases of the straight-line segment and the circular

profde. Figure 3 showa the critical values of ~co(=~)
plot~ed against the thickness ratio.

I I 1 I I
#fruighf -line segmenf

MO “

90

.80

~
o
.:
“t 70~ \

g
a“ \

.60
\

\

.50
Cieu[ar

.400
.2 .4 .6 .8 1.0

Thickness raftb, t

RomE 8.—TIM erltkd rntfo WCIes a fnndon of the ~ ratio t.

TABLE IV

I

LUMI
.919
.S57
.s46
.s30
. al
.7ss
.759
.719
.603
.577
.m
.4s5

:E

THE THIRD APPROXIMATION TO THE COMPRESSIBLE
FLOW ABOUT CIRCULAR CYLINDERS

In reference 2, the opinion is expressed by Hooker
Lhat the terms invohing (r~cO)4,thus far neglected,
may become of considerable importance as the local
velocity of sound is approached on the ellipse. Hooker,
however, did not inwdgate the matter any further.
In reference 4, Poggi calculated these terms for the
compressible flow about a circular cyIinder, but a close
wmmiuat.ionof his work shows that not r.dIsuch terms
were taken into account. In what foIIows the terms
megkctedby Poggi wiUbe obtained and compared with”
Ihe already existing on=.
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The fundamental integral equation (1) may be ~~ritten
as follGws:

[i-w-a+IS’”“-’)’”8’22)
where I/cg has been replaced by a power series in
P(=002/cO~obtaiged -from equation (3); i. e.:

The method followed by P.oggi waa to substitute for
o,, o~jand # expressionspertaining to the incompressible
flow and tkus obtain the follow@ result: 1

)+&l158 /.?+ . .

The velocity for the compressible flow
the circular cylinder then becomes:

‘=’=vy+$Q

where Aw/~ is given by equation (23).

(23)

at the surface of

(24)

Equation (24) thus represents the second approxima-
tion to the compressible flow, the first appro.~ation
being the purely incompressible flow given by Vtiempf%.

The third approximation may be obtained, at least in
principle, by substituting for v,, v~, and @ in equation
(22) expressions based on the second approximation.
Such expressions, as far as the terms invohing p are
concerned, are given in reference 3 and are as follows:

v,
-=–(1-A’) Cos f9–
Vo J(

–gA2+; 5
)~4–# Cos o

+($$) Cos 36]+. . .

[(
~=(l+k2) sin 6+IJ ~1’–jh’++k’) sin 13

+(–~A’+~h4) sin 36]+. .

:=(1 +x’) –h’ Cos 2e+p[(+k4–:k’-P;A’)

+(–:h’+ A’– X6+$) Cos28+ h’ Cos 48]+. .

1The wrrespondlng term ~volvf ng (-r-l)” ii were Obtfdriadfor ~I!P~~c~Ylfn&s
and it was fownd that they reduce to thaae giren in equatton (23) for the cfrcle. How.
aver, in referenca4 the raelliclenf.sof ah 6and ain 66are ?ihren,respectively, os %o
and MOowfng to a dIght error In the calculetiona. PIstolesl (reference3) EIVWfor the
meflkient of e.ind the value 4H90 w}ich, in view of the independent chwk of POKS1’S
results by the author, Is MIeved ta be a mleprint.

Rwhere it is recalled that k=;.

When th Ioreigoing mpreasions are substituted into
equation (22) and only the terms involving p and # mc
evdurited, it is found that, besides the terms given by
equation (23), the following onos involving p~ must. IN
included:

These terms seem to have been overlocdml by both
Poggi and PistoIesi (reference 3).

The third approxinmtion to the compressible flow At.
the surface of the circular cylinder then lmcomes:

+ (7–l)(#osill a–~ sin 36

)1+; sin ,56 L?+ . . (2G)

It is interesting to compare the magnitudes of tlw
various terms in eqnation (26) at the position of mnxi-
mum velocity 6=~/2”ind for the criticnl vnluo K= 0.1070
(obtained by means of equations (20) and (26)). Thus

(2 sin 13),-Z=2
!4

Thus, it is seen that the terms involving PZdo bccamo
of importance with regard to the P terms M tho local
velocity of sound is approached on the circle and tlirtt
the main contribution is made by expression (25).

LANGLE-i MEMORIAL AERONAUTICAL LABORATORY,

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS,

LANGLEY FIELD, VA., Februmy f 1, 19%.



APPENDIX

If 2 cos 2tI is replaced by e~+e-mj then

Since, by the binomial theorem,

and

H=,5Ja(~v)f+vfu-’)ff
Let

j+k=n
and therefore

j–k=n—2k, j=n—k

The double series then becomes

H=* ~fo%2)”eu(’-*)4
n-o k-o

The terms of this series can be grouped in pairs sucl
that

a.n—l_=
CQ22

z7=2~ p (CM)” ,0s (n-2k)2tl (1;
n-o =0

n n—1where ~ or —~ is the upper limit according as n k

even or odd and where the factir 2 jg omitt~ from tht

term for which n is ewsn and k% This term i

independent of 8 and there is only one such term, noi
two.

The series (1) may be written as

vikre

Expanding this series and rearranging the terms in the
form of a Fourier series,

and

Therefore

[
H=~

l—a’A~ 11+2jj(& Cos 2ne (2)mGL

H. The Integrals

J
L!r

J,=
sin (6%%)

Cos nddo1) I—2A Cos (B—8)+A*
and

J
*

J*=
sin ((?-6)

sin TuW(1 1—2X Cos (e—a)+x~

If 2COS(6—6) is replaced by eit~-~)+e-ff~-~1, -

then

1
[

ew-a) e- fa-t)

=ewd) _e-i(H) 1_ ~ei(’-n — 1~) 1

k fo~ows that m=n— 1 and therefore

Hence, for n> 1,

JL= –rAn-’ sin n3 and JZ=TAU-L cos n~ (3)

III. The Fourier Expansion of

(1–20%’ C:s 213+C’X’)2 “
In analogy to section I, replace 2 cos 28 by ~e~~+e-m.

rhen

‘=(1 –20-2A’ C:s 28+a’A’)*

.——
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Therefore

j+k=n
and therefore

Then
j–k=n–ik,”j=n–k”

W=n$i$Jn-k+1) (k+ 1) (O%z)’ezi@-ftl@

Theexponent ofeis2i~(n–k)-k]t?. Ifkandn–k are
interchanged, the exponent of e changes sigg but the
coeficitmt of e ramains unaltered. The terms can
therefore be grouped in pairs so that:

“II n-l -
m5’-r

&=2n~0 PO (n–k+l) (k+l) (a%~s COS (n–2k)20 (4)

where the factor 2 is omitted from the term for which

n iseven and k=$d

The series (4) may b.e written as

~, ~1

-ij & Att,tcOS (n–2k)2@

where
An,t=2(n-k+ij (k+l) (0-%2)’

Expanding this series and rearranging the terms in the
form of a Fourier series,

But

and
a

pL-t 2k ,k
F

=2(0’9X9” “ (n+k+ l)(k+l)(c’A’)k
=0 -o

=2(&h#n+l)-(n–l)OW
(1–e%’)’

Therefore

‘~=a(’+u4’4)+2z’(n+l)
I– (n– l) U’A’](CT%Z)’Cos 2n4 (5)
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